-
Partager cette page
Seminar on Data Literacy
Titulaire(s) du cours
Gani ALDASHEV (Coordonnateur), Micael CASTANHEIRA DE MOURA et Vincent MABILLARDCrédits ECTS
5
Langue(s) d'enseignement
anglais
Contenu du cours
Objectifs (et/ou acquis d'apprentissages spécifiques)
- Critically reflect on the production of data used in both the scientific and non-scientific publications;
- Critically reflect on the narrative that is proposed by the contributions based on quantitative data;
- Be able to fully understand the complexity of causation, and clearly distinguish causation from correlation analysis;
- Better interpret the visual language of charts, graphs and figures;
- Better encode data in charts, graphs and figures, and choose the best visualization tools for communication research results;
- Be able to write a report that includes the above-mentioned elements to make sense of a concrete case.
Pré-requis et Co-requis
Connaissances et compétences pré-requises ou co-requises
Students must have passed at least one undergraduate course in introductory statistics prior to taking this course.
Méthodes d'enseignement et activités d'apprentissages
-
Classes on the fundamentals of data literacy
-
Exercises in class and participatory activities
-
Writing of a report on a concrete case
-
Presentation of the report in class at the end of the semester
-
Discussion on the presentations and the cases
Références, bibliographie et lectures recommandées
All references related to the cases distributed to the students will be made available on the UV website of the course
Support(s) de cours
- Université virtuelle
Contribution au profil d'enseignement
This seminar contributes to the objectives of the master program in the following way: LO 1.2. Identify and apply the relevant analytical tools and scientific knowledge to analyse an economic problem in depth; LO 1.4. Collect, organise and analyse data to critically understand the main policy challenges and to support policy analysis and recommendations; LO 2.1. Adopt a scientific approach to data collection, research and analysis and communicate results with clear, structured and sophisticated arguments; LO 3.1. Apply quantitative and qualitative techniques to support data analysis using standard office and statistical software; LO 4.1. Work and communicate effectively as part of a team in an international and multicultural environment; LO 4.2. Demonstrate a strong work ethic.
Autres renseignements
Contacts
Prof. Gani Aldashev (gani.aldashev@ulb.be)
Prof. Vincent Mabillard (vincent.mabillard@ulb.be)
Campus
Solbosch
Evaluation
Méthode(s) d'évaluation
- Présentation orale
- Travail de groupe
- Rapport écrit
Présentation orale
Travail de groupe
Rapport écrit
Construction de la note (en ce compris, la pondération des notes partielles)
Students will be evaluated on the basis of both the written report and the oral presentation.
Langue(s) d'évaluation
- anglais