-
Partager cette page
Differential geometry I
Titulaire(s) du cours
Andriy Haydys (Coordonnateur)Crédits ECTS
5
Langue(s) d'enseignement
anglais
Contenu du cours
• Smooth manifolds and smooth maps ;
• Embeddings and Whitney’s theorem ;
• Tangent and cotangent bundles, vector bundles ;
• Vector fields and 1-parameter groups of diffeomorphisms ;
• Indices of smooth maps ;
• Indices of vector fields and Euler characteristic of manifolds ;
• Morse functions.
Objectifs (et/ou acquis d'apprentissages spécifiques)
This course is the first part of the Differential Geometry course. In particular, basic notions and methods of differential geometry such as smooth manifolds, vector fields, vector bundles etc. appearing both in various branches of mathematics and physics will be introduced and developed. At the end of this teaching unit, a student will be able
• to decide whether a given topological space is a manifold ;
• to compute the differential of a smooth maps, its critical points ;
• to compute examples of integral curves of vector fields ;
• describe properties of 1-parameter groups of diffeomorphisms generated by vector fields ;
• compute the degree of a smooth map between manifolds of equal dimensions ;
• compute the index of a vector field and the Euler characteristic of a manifold.
Pré-requis et Co-requis
Connaissances et compétences pré-requises ou co-requises
MATH-F201 Calcul différentiel et intégral II
MATH-F211 Topologie
Cours pré-requis
Cours co-requis
Méthodes d'enseignement et activités d'apprentissages
• Lectures, including remote lecture on Teams if lecturing in person will not be possible.
• Weekly question and answer sessions.
• Guided exercises in small groups.
Références, bibliographie et lectures recommandées
-
D.Barden, C.Thomas. An introduction to differential manifolds, Imperiall College Press.
J.Lee. Introduction to smooth manifolds, Springer Verlag.
L.Tu. An introduction to manifolds, Springer Verlag.
A.Shastri. Elements of differential topology, CRC Press.
Contribution au profil d'enseignement
• To master the principles of logical reasoning and to be able to base on them a flawless argumentation.
• To understand how a concept emerges from observations , examples.
• Understand an abstraction process and its role in the development of a theory.
• Write a mathematically rigorous solution or a result in a mathematical theory.
Autres renseignements
Informations complémentaires
It is intended to provide written lecture notes.
Contacts
Andriy Haydys, andriy.haydys@ulb.be
Campus
Plaine
Evaluation
Méthode(s) d'évaluation
- Examen écrit
- Travail de groupe
Examen écrit
Travail de groupe
80 % Examen écrit + 20 % Travail de groupe
Langue(s) d'évaluation
- anglais